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This problem is called the assembly line balancing 
problem (ALBP) and usually occurred when an 
assembly line has to be configured or redesigned. 
The aim of this problem is to arrange the 
individual processing and assembly tasks (jobs) at 
the workstations so that one or more specific 
objective(s) is satisfied. According to the 
assumptions, ALBP can be classified into two 
main categories: (i) simple ALBP (SALBP), and 
(ii) generalized ALBP (GALBP). Four types of 
formulation have been yet presented with SALBP: 
(i) SALBP-1 which attempts to minimize the 
number of stations for a given fixed cycle time, (ii) 
SALBP-2 which attempts to minimize the cycle 
time of the line for a given number of stations, (iii) 
SALBP-E which attempts to maximize the line 
efficiency upon a feasible solution and SALBP-F 
which consists of determining if a certain assembly 
solution is feasible or not. Moreover the GALBP is 
an extended type of ALBP with different 
additional characteristics such as cost functions, 
equipment selection, paralleling, U-shaped line 
layout, and mixed-model production. The first 
research published on the assembly line balancing 
problem is Salveson [1] in 1955. After that the 
ALBP has been a hot topic for researchers. 
Different optimal solution techniques, such as 
branch-and-bound procedures [14,15] and dynamic 
programming [16, 17] have been developed for 
assembly line balancing problems. A good review 
of these techniques can be found in Scholl and 
Becker [18]. Regarding the solving methods, due 
to the combinatorial nature of the problem, 
applicability of optimal solution algorithms for 
large-sized problems is restricted. Even the linear 
assembly line balancing is known to be a NP-hard 
problem [19]. If there are m tasks and r ordering 
constraints, then there are m!/2r possible task 
sequences [20]. Because of such a vast search 
space, it is nearly impossible to obtain an optimal 
solution by deterministic algorithms. Therefore, 
recently, some researchers turned their attention to 
the use of meta-heuristics for the solution of 
SALBP. The most notable of this group of 
algorithms are evolutionary computation (EC) 
methods such as evolutionary algorithms [21], 
simulated annealing [22] and tabu-search [23, 24]. 
Nearchou [25] uses differential evolution in order 
to solve multi-objective assembly line. His 
Extended comparisons with other previously 

published evolutionary computation methods 
showed a superior performance for the 
proposed approach. 
Despite the great interest in ALBP 
demonstrated by researchers [2-5], recently 
Ghosh and Gagnon [6] and Erel and Sarin [7] 
talked about the inability of the published 
methods to correctly model actual conditions 
and proposed that further works should be 
conducted at more useful directions in which 
the impact of real-life variables on assembly 
lines is considered. It was shown that in spite 
of the great amount of extensions of basic 
assembly line balancing, there remains a gap 
between requirements of real configuration 
problems and the status of research papers.  
Rekiek (2000) [8] mentioned that the gap 
between research methodologies developed 
for ALBP and real-life problems is caused by 
a number of factors. It might result from 
research papers focusing on just a single or 
only a few real extensions at a time. As an 
example, in a modern production system, not 
only ALBPs occur prior to its construction, 
but also due to dynamic nature of market 
parameters, a reconfiguration or rebalancing 
is needed continuously during the system 
lifetime [9, 10]. In literature, a wide variety of 
algorithms for solving the traditional ALBP 
are found, however almost all of them 
consider this problem under static condition 
that is, before the line deployment [11]. 
Nevertheless, need for improvement in design 
of product, continuous changes in market 
requirements, presenting more options for 
customer and also tendency to reduce time-to-
market are some factors encourage the 
researcher for a dynamic version of ALBP. 
Since unpredictable changes are inevitable, in 
order to increase capability of responding to 
abovementioned changes, this problem are 
becoming more desirable in recent years. In 
order to formulate the suggested ALBP, its 
objective and constraints should be 
delineated. During the lifetime of a 
production system, when a market parameter 
is changed, the minimization of the number of 
stations is less important because of its high 
expenses. On the other hand, the cycle time is 
often determined based on sales forecasts. As 
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a consequence, the major decision in an ALRBP is 
to find a feasible solution in which the given 
number of stations and the demand related cycle 
time are not violated. Equivalently the number of 
workstations and required cycle time are 
considered as new constraints in modeling of an 
ALRBP in addition to the precedence constraints 
and assignment constraints (an assignment of each 
task to exactly one station). Once resources are 
allotted to stations, heavy machinery might not be 
reallocated. In this case, all tasks which require this 
resource need to remain at their previous station, 
which can be enforced by assignment restrictions 
[3]. Additionally, the movement of a machine is, 
however, not technically impossible, but associated 
movement costs are inevitable. In this case, 
movement costs need to be considered explicitly 
[11, 12]. Moreover, space constraints need to be 
considered whenever a machine is moved [13]. 
The space at a station might be limited, so that two 
tasks each of which requires a large machine 
cannot be assigned to the same station [3]. Not 
only the machinery, but also the operators of the 
assembly line have been assigned to a certain 
station. They may have been especially trained to 
carry out the respective work content, so that a 
change will additionally be associated with training 
costs. Therefore it could be desirable that the new 
line balance remains as close as possible to the 
previous one, in order to save training and 
movement costs. Hence the objective of suggested 
ALRBP is maximized the similarity between 
current line and the new one in terms of assigned 
tasks to the stations. Therefore, we can infer that 
the suggested ALRBP is like ALBP except that 
number of station is fixed and a new demand 
related cycle time should be satisfied. It does not 
focus on balancing a new line; instead it considers 
a more realistic problem which is re-balancing an 
existing line. ALRBP can be classified to simple 
and general ALRBP which consider different 
additional characteristics, as ALBP has been 
classified. In this paper, differential a evolution 
algorithm is developed to solve simple assembly 
line re-balancing problem (SALRBP). 
Furthermore, to enhance the performance of 
algorithm, its parameters are optimized using 
Taguchi method which is a conventional statistical 
technique for parameter design.  

The rest of paper is structured as follow: At 
first, the problem is described in next section. 
Differential evolution is explained in section 
3. Taguchi experimental design which 
analyzed suggestive algorithm, present in 
section 4; meanwhile, summery and possible 
future research directions are provided in 
Section 5. 
 

2. Problem Definition and Mathematical 
Modeling 

SAL re-balancing can be stated as follows. A 
set ܹܵ ൌ	 ሼ1, . . . , ݉ሽ of ݉ workstations are 
arranged along an assembly line. There are n 
elementary operations called tasks ܸ ൌ
ሼ1, . . . ݊ሽ should be carried out by workers. 
Each task ݅	ሺܸ݅ሻ is performed on exactly 
one workstation and requires a deterministic 
processing time ti ሺ݅ ൌ 1, . . . , ݊ሻ.	The tasks are 
partially ordered by precedence relations 
defining a directed acyclic precedence graph 
(DAG) ܩ ൌ ሺܸ, ,ሻ. An edge ሺ݅ܧ ݆ሻ denotes 
that task i must be started before task ݆ can be 
started. Each station ݇ has a station load Sk 
(i.e. a set of tasks assigned to station ݇). Each 
workstation can complete its assigned tasks 
within the specified cycle time.

CTmiittS
Skik  

),...,2,1( . The cycle 

time which denoted by c is determined based 
on the sailing factors. There is an initial 
assignment in order to assign tasks into 
workstations and an initial cycle time which 
denotes by ܿ̂. Given WS, ti ሺ݅ ൌ 1, . . . , ݊ሻ and 
G , the objective of SAL re-balancing 
problem is to find a feasible line balance (i.e., 
an assignment of the n tasks to the m 
workstations not violating the precedence and 
assignment constraints) in which the cycle 
time is less than c and remains as similar as 
previous one. The following assumptions are 
used in the formulation of the model. 
(1)  The assembly line contains one family of 

products.  
(2)  All the tasks are performed through a 

predefined manner. 
(3)  A new cycle time related to the market 

demand is needed which is different from 
current cycle time. 
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(4)  The assembly line has a straight shape and 
there is not any buffer space.  

(5)  All the tasks should be performed based on 
precedence constraints. 

(6)  All the processing times are deterministic. 
(7)  All the machines are available at planning 

horizon. 
 

According to above statement, mathematical model 
of the SALRBP can be proposed as follows:  
Let xik is a binary variable such that: 
 

ݔ
ൌ ቄ 1						if	task	݅	is	a

			0				otherwise			

for	݅
ൌ 1,2,… , ݊	and ݇ ߳ ܹ

1
1




m

k
ikx  for	݅ ൌ 1,2,… , ݊    (1)

cxt ik

n

i
i 

1  
for	݇ ൌ 1,2, … ,݉ (2)





ih WSk

ik
WSk

hk kxkx ih ELAhi  &),(

 
(3)

 
where: 
M Precedence matrix 
G Precedence graph 
V Set of all tasks 
n Number of tasks 
m Number of stations 
 The cycle time which is determined based ܶܥ
on the sailing factors  
ܹ ܵ  The station interval of the task i 
 

 iii LEWS ,                                                          (4)                         
 
Ei The earliest station of the task i, for i= 1,2,  
 
… , N 
ܧ ൌ ൣሺݐ  ∑ ఢݐ ሻ/ܶܥ൧                                (5) 
 
Pi Set of direct and indirect predecessors of 
task i, with respect to M 
Li The latest station of the task i, for i= 1,2, … 
, N 
ܮ ൌ ݉  1 െ ൣሺݐ  ∑ ఢிݐ ሻ/ܶܥ൧                 (6) 
Fi Set of direct and indirect successors of task 
i, with respect to M 

A Set of direct precedence relations 
ൌ ሼሺ݅, ݆ሻ|ܸ݅߳	ܽ݊݀	݆߳ܨሽ 
The constraints (1) ensures that each task is 
assigned to exactly one station, constraint (2) 
guarantees that the new cycle time is not 
exceeded and constraint (3) represents 
restrictions due to technological precedence 
among tasks. Feasible solutions are evaluated 
latter with the following objective: 
 
max				ܰܵܵ ൌ ∑ ݕ


ୀଵ                                  (7) 

s.t. 
ݕ ൌ ∑ ݔݔ

′
ୀଵ                                         (8) 

for	݅ ൌ 1,2, … , ݊ 
 
where ́ݔ is a binary variable so that: 
ݔ
′

ൌ ቄ1										if	task	݅	is	assigned	to	station	݇	in	initial	assignment
0		otherwise																																																																																									

 

and NSS is number of tasks which have been 
assigned to their previous stations. 
 

3. Solution Approach 
3-1.General Differential Evolution 
Algorithm (DEA) 
The differential evolution algorithm (DEA) is 
a kind of evolutionary algorithms (EA) first 
introduced by Storn and Price [26]. Due to its 
invention, DEA has been extensively applied 
with high success on many numerical 
optimization problems outperforming other 
more popular population heuristics such as 
GAs [27, 28]. Recently, some researchers 
successfully extended the application of DEA 
to the machine layout problem [29] and the 
flow-shop scheduling problem [30].  
The main feature and stages of a classical 
DEA are as follows:  
 
Step 1: DEA utilizes Np, D-dimensional 
parameter vectors xi,k, i=1, 2, . . . , Np, as a 
population to search the feasible region ߗ 
uniformly of a given problem. The index k 
denotes the iteration (or generation) number of 
the algorithm. The initial population (where 
k=0), 
 

 0,0,20,1 ,...,, NPxxx
                                   (9) 

 

Step 2:  At each iteration all vectors in ߮ 
are targeted for replacement. Therefore, Np 
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competitions are held to determine the members of 
߮ for the next iterations. This is achieved by using 
mutation, crossover and acceptance operators. 
 
Step 3:  Mutation phase 
For each target vector xi,k, i=1, . . . , Np, a mutant 
vector ݔො is obtained by: 
 

    kkkkbestvi xxFsxrxrx ,,,,, 1.  
        (10) 

 
where ߛ ,ߚ ,ߙ ϵ {1, . . . ,Np} are mutually distinct 
random indices and are also different from the 
current target index i, ݎ ∈ ሾ0,1ሿ is a random 
number that is generated randomly for each mutant 
vector. It is a coefficient for the convex 
combination between the best element kbestx ,  of ߮, 

and a randomly combination of three random 
elements. The vector ݔఈ, is known as the base 
vector and Fs>0 is a scaling parameter. 
Step 4:  Crossover phase 
The crossover operator is applied to obtain the trial 
vector yi,k from ݔොand xi,k by the following 
equation: 

,ݕ
 ൌ ቊ

ො,ݔ
 									݂݅	ܴ  ܮ	or	ܴܥ ൌ ܫ

,ݔ
 																					݁ݏ݅ݓݎ݄݁ݐ								

 

(11) 
In the above equation CR shows the crossover rate, 
Ii is a random number in [1,D] that guarantee that 
at least one gene is difference between xi,k and yi,k 

and therefore xi,k and yi,k are not the same no way. 
 
Step 5:  Acceptance phase 
After all Np trial vectors yi,k have been generated, 
acceptance is applied. In the acceptance phase, the 
fitness function of the trial vector, F(yi,k), is 
compared to F(xi,k), the value at the target vector 
and the target vector is updated using: 

,ାଵݔ ൌ ቊ
,൯ݕ൫ܨ	݂݅								,ݕ ൏ ,ሻݔሺܨ
																													ܹ.ܱ							,ݔ

 

(12) 
Step 6:  Mutation, crossover and acceptance 
phases continue until some stopping conditions are 
met. 
 

3-2. The Proposed DEA-Based Approach for 
the Solution of SAL Re-balancing Problem 
Adapting a DEA for a particular domain needs the 
specification of the following characteristics: 

– A representation mechanism, i.e., a way of 
encoding ALB solutions to floating-point 
vectors. 
– An evaluation mechanism, i.e., a way of 
evaluating the quality of each vector. 
– A way of initializing the population of 
vectors. 
– The application of mutation and crossover 
operators on the population in order to 
generate new ‘better’ populations. 
 
3-3. The Representation Mechanism 
The representation mechanism of SAL re-
balancing problem is similar to SALB. Two 
different schemes of string representations 
applicable to ALBPs: The station-oriented 
and the task-oriented representation. Both of 
them assume a string of integers and a string 
length equal to the number of tasks to be 
proceeded in the assembly line. If the ݅-th 
position of the string has the value ݆, then, 
using the station-oriented representation, task 
݅ is assigned to workstation ݆. While, using 
the task-oriented representation, task j in 
location i of the string will be assigned to a 
workstation before the task in location (݅  1) 
of the string. The tasks are allocated into 
stations starting from the first (݇ ൌ 1) and 
considering the other stations successively. 
When a station is loaded maximally, it is 
closed, and a new station (݇  1) is opened. A 
solution is feasible when the generated 
sequence of the tasks in the line does not 
break the specified precedence constraints. In 
this paper we used task-oriented approach. 
Also Nearchou [25] states that task-oriented 
approach is superior in both speed of 
convergence and quality of solution. This 
mechanism is implemented using the 
following procedure proposed by Nearchou 
[25]: 

  Begin 
     For all single solution do 
      Set U=Ф; 
      Repeat 
        For all Vi do 
          If i has no predecessors then

iUU  , i.e. insert i into the set U; 
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Determine the gene i of   with the maximum 

value for all Ui  
Insert task i into the next available position in the 
partial schedule (PS) 

iUU / , i.e. remove task i from U; 
Until PS has been completed; 
Return PS 
End 
 
3-4. How a DEA’s phenotype is decoded into a 
SAL re-balancing problem solution? 
Once a specific floating-point vector (i.e., a DEA’s 
genotype) is encoded into a feasible assembly line 
re-balancing solution (DEA’s phenotype), an 
appropriate decoding scheme is needed to map this 
phenotype to an actual solution for SAL re-
balancing problem. In other words, a method is 
needed to assign the tasks in the generated task 
sequence into the workstations. The main idea is to 
face SAL re-balancing problem through an iterated 
procedure that solves the corresponding SALBP-1 
with a cycle time value being progressively 
decreased until reaching a near-optimum value 
within a specific permitted range. This decoding 
scheme is as follows: 
Pseudo code of assigning the task to station and 
calculating cycle time (Topological-ordering-
encoding): 

  Begin 
    Set ܿ̅=tsum/m; 
    While cw<ܿ̅ do 

Assign as many tasks as possible into the 
first (m-1) workstations; 
Assign all the remaining tasks to the last 
workstation, m; 

       For z=1 to m do 
         Calculate Wz=tSz; 
       For z=1 to (m-1) do 

Calculate PWz= tSz+ the processing 
time of the first task assigned to (z+1)st 
station; 

       Set cw=max  mWWW ,...,, 21  and ܿ̅=min

 121 ,...,, mPWPWPW ; 

     Return cw 
  End 

3-5. Evaluation Mechanism 
To investigate the quality of each solution, a 
mechanism corresponding to the fitness function 
for each phenotype is needed. To this end, a fitness 

function is defined as the performance 
evaluation of the solutions. Fitness is usually 
represented with a unique function that 
indicates relative superiority of solutions. As 
mentioned before, in this study the following 
objectives are to be minimized: the incurred 
costs and (ii) non-smoothing of reconfigured 
line. The weighted sum of objectives is 
suggested as follows. 

Fitness=w1f1+w2f2 

in which 

*1

][

NSS

iNSS
f   , 

][

*

2 iSX

SX
f                           (13) 

and ݓଵ and ݓଶ are relative importance of f1 

and f2 respectively, and can be set upon 
requirements. The objective f1 in this problem 
is to maximize number of tasks which assign 
to their previous stations given a fixed station 
number m and predetermined cycle time 
based on sailing factors while the objective f2 
is non-smoothing of reconfigures line. Hence 
the following fitness function is suggested: 
NSS= number of tasks which assign to their 
previous stations 
Pseudo code of calculating objective function 
is as follows. 
 

  Begin 
    For i=1 to N do 
      If St[i] =St1 [i] then NSS=NSS+1; 
  End  
 

In above procedure, St[i] presents the station 
of ith task while St1 [i] presents the previous 
station of ith task.  
 

4. Taguchi Experimental Design 
The DEA is easy to implement with fast 
convergence, and requires a few control 
parameters. It generally shows reliable, 
accurate and fast performance. However, the 
user is required to set the values of control 
parameters for each problem which is a time 
consuming procedure. To achieve better 
robustness of the algorithm by not producing 
functional variance under external 
environment influence, the ‘‘parameter 
design’’ developed by Dr. Taguchi in early 
1960s can be applied. Taguchi discussed that 
the optimal operator combination is to 
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minimize variances of quality characteristics 
resulted from S/N ratio, which explains the reason 
why parameter design is also called robust design. 
As well as S/N ratio which is utilized for 
minimizing the variances, the mean of quality 
characteristics is also used for determining the 
adjustment factors which are utilized for causing to 
approach the quality characteristic to the objective 
point. Additionally, quality characteristic of this 
research is expected NSS, which prefers the higher 
is better principle.  
 
4-1. Generation of test data and selection of 
Taguchi scheme  
An experiment was conducted to test the 
performance of algorithm. Parameters required for 
the algorithm are crossover rate (CR), scaling 
parameters (Fs), rate (coefficient) of best function 
(r), penalty (PR) and finally pop-size and iterations 
(NP&NG). Factors and their levels are shown in 
Table 1. 
 

Tab. 1. Factor levels 

Factor Index of level Level

CR 1 0.5 
 2 0.75 
 3 0.9 
 4 1 

Fs 1 0.75
 2 0.9 
 3 1 
 4 1.5 
r 1 0
 2 0.3 
 3 0.5 
 4 0.8 

ሺܰܲ,ܰܩሻ 1 ሺ݊, 3݊ሻ
 2 ሺ1.75݊, 1.7݊ሻ 
 3 ሺ2݊, 1.5݊ሻ 
 4 ሺ3݊, ݊ሻ

PR 1 10
 2 12 
 3 14 
 4 16 

 
Data required for a problem consist of the 
precedence graph, new cycle time, and primary 
assignment. The precedence graphs are available at 

[31]. The performance of DEA was examined 
over a large set of benchmark ALB instances 
taken from the open literature and randomly 
generated primary assignment and new cycle 
time lower than current cycle time. The 
benchmarks include test instances organized 
into two data sets. Data set 1 contains 128 
instances for 9 precedence graphs with tasks 
varying from 29 to 111, while data set 2 
contains 174 instances concerning 8 
precedence graphs with tasks varying from 53 
to 297. In this study we integrate all instances 
and classified them into three sets. First set 
contains precedence graph with task varying 
from 29 to 44 (small size problems), second 
set contains precedence graph with task 
varying from 45 to 69 (medium size 
problems) and finally third sets contains 
precedence graph with higher 70 tasks (large 
size problems). Considered benchmarks are 
summarized in Table 2. 
 

 

Tab. 2. Considered Benchmarks 

Problem 
size 

Processing 
graph 

Number of 
stations(m) 

Small  Buxey 

7 

9 

10 

12 

14 

Medium Warnecke 

5 

9 

13 

17

21 

Large Tonge 

5 

10 

15 

20 

25 

 
The full factorial experiment design for 
aforesaid five factors requires 45 experiments. 
We used fractional replicated designs. For 



112        Hadi	Mokhtari	,	Ashkan	Mozdgir														A Bi-Objective Approach for Design of an Assembly Line Re-. . .  

International Journal of Industrial Engineering & Production Research, March 2015, Vol. 26, No. 2. 

selecting appropriate orthogonal array it is required 
calculating the number of degree of freedom. In 
this research, a degree of freedom for total mean 
and three degree of freedom for each factor with 
three levels (3 ൈ 5 ൌ 15) are required. Thus, sum 
of required degree of freedom equals to: 1  3 ൈ
5 ൌ 16. Therefore, the appropriate array at least 
must have 16 rows. Table 3 shows the orthogonal 
array L16 (4

5), where control factors are assigned to 
the columns of the orthogonal array. 
 

Tab. 3. The Orthogonal Array L16 (4
5) 

Trial CR Fs r ሺNG, NPሻ PR 
1 1 1 1 1 1 
2 1 2 2 2 2 
3 1 3 3 3 3 
4 1 4 4 4 4 
5 2 1 2 3 4 
6 2 2 1 4 3 
7 2 3 4 1 2 
8 2 4 3 2 1 
9 3 1 3 4 2 
10 3 2 4 3 1 
11 3 3 1 2 4 
12 3 4 2 1 3 
13 4 1 4 2 3 
14 4 2 3 1 4 
15 4 3 2 4 1 
16 4 4 1 3 2 

 
5. Experimental result 

As mentioned above, the performance of DEA was 
examined over a large set of benchmark ALB 
instances taken from the open literature and 3 sets 
of data were considered for small, medium, and 
large size problems. For each set, differential 
evolution was experimented based on the 
orthogonal array distribution method, so 16 
different level combinations of control factors were 
considered. For each trial in a set, five instances 
were randomly considered and four replication 
were performed. After transforming the obtained 
data into S/N values, the S/N ratio results of 
expected ܰܵܵ	are summarized in Table 4.  
 
 

Tab. 4. The S/N Ratios for Expected NSS 

Trial
Control Parameter S/N Ratio 

ܴܥ ݏܨ ݎ ሺܰܩ,ܰܲሻ ܴܲ Small Medium Large

1 1 1 1 1 1 26.526 31.172 33.044

2 1 2 2 2 2 26.902 31.476 33.416

3 1 3 3 3 3 27.171 31.849 33.851

4 1 4 4 4 4 26.848 31.878 34.557

5 2 1 2 3 4 26.796 31.591 33.416

6 2 2 1 4 3 26.269 30.892 32.272

7 2 3 4 1 2 26.555 31.778 33.752

8 2 4 3 2 1 26.822 31.860 33.962

9 3 1 3 4 2 26.991 32.056 34.195

10 3 2 4 3 1 26.268 31.614 33.676

11 3 3 1 2 4 26.238 30.886 32.730

12 3 4 2 1 3 26.480 31.828 34.109

13 4 1 4 2 3 25.334 31.045 32.363

14 4 2 3 1 4 25.819 32.114 33.405

15 4 3 2 4 1 26.537 31.691 33.679

16 4 4 1 3 2 26.049 31.381 32.669

The best robustness of the algorithm are 
shown in Table 5. 
 

Tab. 5. Optimized Factor Levels 

Factor 
Optimized level 

Small Medium Large 

CR 0.5 0.5 0.9   &
0 5

Fs 1 1.5 1.5 

r 0.5 0.5 0.5 

ሺܰܲ,ܰܩሻ ሺ3݊, ݊ሻ ሺ݊, 3݊ሻ ሺ3݊, ݊ሻ 

PR 12 12 10 
 

For understanding about adjustment factors, 
we use the mean of relative percentage 
deviations (RPD) for NSS. The RPD value is 
defined as follows: 
 

ܦܴܲ ൌ
௫ೕ൫ேௌௌೕ൯ିேௌௌೕ

௫ೕ൫ேௌௌೕ൯
               (14) 

i and j denote respectively index of trial and 
replication. After transforming the obtained 
data into RPD values, the mean RPD results 
of expected NSS are summarized in Table 6.  
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Tab. 6. The Value Results for Expected NSS 

Trial 
Control Parameter Expected RPD 

ሻ ܴܲ Small Mediumܲܰ,ܩሺܰ ݎ ݏܨ ܴܥ Large 

1 1 1 1 1 1 0.163 0.212 0.288
2 1 2 2 2 2 0.098 0.225 0.247
3 1 3 3 3 3 0.112 0.203 0.226
4 1 4 4 4 4 0.071 0.195 0.163
5 2 1 2 3 4 0.137 0.231 0.255
6 2 2 1 4 3 0.125 0.212 0.302
7 2 3 4 1 2 0.102 0.186 0.217
8 2 4 3 2 1 0.140 0.196 0.207
9 3 1 3 4 2 0.125 0.203 0.193 

10 3 2 4 3 1 0.129 0.197 0.228 
11 3 3 1 2 4 0.121 0.219 0.295 
12 3 4 2 1 3 0.100 0.205 0.204 
13 4 1 4 2 3 0.172 0.188 0.284 
14 4 2 3 1 4 0.223 0.151 0.227 
15 4 3 2 4 1 0.096 0.211 0.217 
16 4 4 1 3 2 0.208 0.179 0.277 

 

Here in this section we implement some additional 
computational experiments. The proposed solution 
approaches which are omitting approach and 
taking penalty of infeasible solution during DEA 
were implemented in Delphi7. The machine used 
was a PC with P4 CPU processors of 2.8 GHz 
running with 256 MB of RAM. To measure the 
effectiveness of the approaches, we compared the 
performance of the two approaches against each 
other. An experiment was conducted to test the 
performance of the solution approaches. 
Parameters required for the algorithm consists of 
the crossover rate (CR), scaling parameters (Fs), 
rate of best function (r), penalty (PR) and finally 

pop-size and iterations (NP&NG). Data 
required for a problem consist of the 
precedence graph, new cycle time, and 
primary assignment. The precedence graphs 
are available at http://www.assembly-line-
balancing.de/. To produce a primary 
assignment, a feasible solution is randomly 
generated and a new cycle time is considered 
less than its current cycle time. The 
benchmarks include test instances organized 
into two data sets. In this study we integrate 
all instances and classified them into three 
sets. First set contains precedence graph with 
task varying from 29 to 44 (small size 
problems), second set contains precedence 
graph with task varying from 45 to 69 
(medium size problems) and finally third sets 
contains precedence graph with higher 70 
tasks (large size problems). In small, medium 
and large size problems 10, 10 and 20 
problems have been solved respectively and 
for each of them 5 iterations of running 
algorithm have been executed. We compared 
the performance of the approaches using three 
measures: average of objective function (OF), 
average percentage error (Error), and standard 
deviation (Std). The percentage error is 
defined as 100*(OF of the heuristic − OF of 
the best heuristic)/ (OF of the best heuristic). 
The results of the computational experiments 
are summarized in Tables 7. Additionally to 
further analyze the performance of suggested 
algorithm, its performance is depicted in 
different size of problems in Figs. 4, 5 and 6. 

 

Tab. 7. Comparison of Penalty and Omitting Approach 

Problem size   Problem name Penalty approach Omitting approach
  Error OF Std Error OF Std

Small 

buxey,m=7 0.04 24 1 0.08 23 1
buxey,m=9 0.03 24.2 0.2 0.06 23.4 0.8
buxey,m=10 0.04 22 0.5 0.09 21 1.5
buxey,m=12 0.01 23.8 0.2 0.06 22.6 1.3
buxey,m=14 0.04 22 0.5 0.11 20.4 0.3
sawyer,m=7 0.04 23 0.5 0.09 21.8 1.7
sawyer,m=9 0.02 25.4 0.3 0.08 23.8 0.7
sawyer,m=11 0.02 24.6 0.3 0.06 23.6 1.3
sawyer,m=14 0.02 23.6 0.3 0.05 22.8 1.2

  gunther,m=10 0.01 30.8 0.2 0.10 27.8 1.7

medium 

warneke,m=9 0.01 49.4 0.3 0.03 48.6 0.3
warneke,m=13 0.02 44.2 0.7 0.03 43.6 2.3
warneke,m=17 0.00 40.8 0.2 0.03 39.6 1.3
warneke,m=21 0.01 40.4 0.3 0.08 37.8 4.7
warneke,m=25 0.01 40.4 0.3 0.06 38.4 7.8



114        Hadi	Mokhtari	,	Ashkan	Mozdgir														A Bi-Objective Approach for Design of an Assembly Line Re-. . .  

International Journal of Industrial Engineering & Production Research, March 2015, Vol. 26, No. 2. 

Problem size   Problem name Penalty approach Omitting approach
  Error OF Std Error OF Std

warneke,m=29 0.02 39.4 0.3 0.06 37.8 2.7
kilbridge,m=4 0.02 39.2 0.7 0.07 37.4 4.3
kilbridge,m=6 0.02 41 1 0.03 40.6 2.8
kilbridge,m=8 0.01 40.6 0.3 0.08 37.6 3.3

  kilbridge,m=10 0.02 40 1 0.04 39.4 1.3

Large 

tonge,m=5 0.02 66.4 1.3 0.04 65 0.5 

tonge,m=8 0.02 63 1 0.03 61.8 0.7
tonge,m=10 0.00 62 0 0.01 61.4 0.8
tonge,m=12 0.02 62 1 0.03 60.8 0.7 

tonge,m=15 0.00 59.8 0.2 0.02 58.6 0.8 

tonge,m=18 0.01 57.6 0.3 0.02 57 0.5
tonge,m=20 0.01 53.4 0.3 0.03 52.4 1.3
tonge,m=22 0.01 49.4 0.3 0.04 48 1.5 

tonge,m=24 0.02 57 0.5 0.04 55.6 1.3 

tonge,m=25 0.01 51.4 0.3 0.03 50.4 0.8 

lutz3,m=4 0.01 83.4 0.8 0.07 78.2 3.2 

lutz3,m=9 0.01 80.4 0.3 0.04 77.4 6.8 

lutz3,m=13 0.01 78 1 0.04 75.8 4.2 

lutz3,m=17 0.01 75.2 0.7 0.05 72.2 9.2 

lutz3,m=21 0.01 74.6 0.3 0.05 71.6 4.3 

lutz2,m=10 0.04 69.4 1.3 0.06 67.6 22.3 

lutz2,m=12 0.01 71.2 0.7 0.06 67.8 12.7 

lutz2,m=16 0.01 73 0.5 0.06 69.6 10.8 

lutz2,m=20 0.03 68.8 1.2 0.06 66.6 8.3 

  lutz2,m=24   0.06 67.8 2.7  0.05 68.2 7.2 
 

 
Fig. 1. Overall error for different size of 

problem 
 

 
Fig. 2. Overall OF for different size of 

problem 
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Fig. 3. Overall Std for different size of problem 
 
As indicated in Figures 1, 2 and 3, penalty 
approach performs much better than omitting one. 
Figure 1 and 3 indicate that the error and Std of 
penalty are smaller than those of omitting, while 
Figure 2 indicates that value of OF for penalty 
approach is larger than omitting one. 

 
5. Conclusions and Future Study 

The differential evolution algorithm (DEA) as a 
well known population based stochastic algorithm 
used to solve the problem of assembly line re-
balancing. Due to the cost of evaluating real-world 
functions, optimization algorithms must be both  
fast and accurate. DEA is easy to implement and 
requires a few control parameters. It generally 
shows reliable and accurate performance. Hence, it 
was addressed in order to re-balancing an existing 
line as similar as previous one. Despite of many 
advantages of DEA, like other nature inspired 
algorithms, it suffers from the cost of parameter 
setting. To overcome these issues and improving 
the convergence speed of DEA, a detailed 
statistical experiment based on Taguchi 
experimental design is performed. Moreover, two 
approach were considered to address infeasibility 
occurred during the solving procedure: (i) Omitting 
infeasible solution, and (ii) Considering penalty for 
the objective function of infeasible solution. After 
experimenting both schemes over selected test 
beds (from a set of benchmarks described), we 
found that penalty method is superior than first one 
in terms of speed of convergence and quality of 
solutions; therefore, it has been decided to adopt 
this scheme to DE. After developing differential 
evolution algorithm to minimize the differences 
between previous and re-balanced line, we tried to 
find optimized DEA parameter levels and 

discussed calibration of DEA controlling 
parameters.  
 

References 
[1] Salveson, M.E.,. The assembly line 

balancing problem. Journal of Industrial 
Engineering. 6, (1955), pp 18–25. 
 

[2] Scholl, A., Becker, C., A note on an 
exact method for cost oriented assembly 
line balancing. International Journal of 
Production Economics 97, (2005),. pp 
343 –352. 

 
[3] Boysen, N., Fliedner, M., Scholl., A. 

Assembly line balancing: Which model 
to use when? International journal of  
Production Economics 111 (2008), pp 
509–528. 

 
[4] Akagi, F., Osaki, H., Kikuchi, S., A 

method for assembly line balancing with 
more than one worker in each station. 
International Journal of Production 
Research 21, (1983), pp 755–770. 

 
[5] Wilhelm, W.E., Gadidov, R., A branch-

and-cut approach for a generic multiple-
product, assembly-system design 
problem. INFORMS Journal on 
Computing 16, (2004), pp 39–55. 

 

[6] Ghosh, S., Gagnon, R.J., A 
comprehensive literature review and 
analysis of the design, balancing and 
scheduling of assembly systems. 
International Journal of Production 
Research 27, (1989), pp 637–670. 

 

[7] Erel, E., Sarin, S.C., A survey of the 
assembly line balancing procedures. 
Production Planning & Control 9, 
(1998), pp 414–434. 

 

[8] Rekiek, B., Design of assembly lines. 
Me´ moire pre´ sente´ en vue de 
l’obtention du grade de docteur en 
sciences applique´ es. Universite´ libre 
de Bruxelles, Brussels, Belgium. (2000). 

 

0

1

2

3

4

5

6

small medium large
Penalty Omitting



116        Hadi	Mokhtari	,	Ashkan	Mozdgir														A Bi-Objective Approach for Design of an Assembly Line Re-. . .  

International Journal of Industrial Engineering & Production Research, March 2015, Vol. 26, No. 2. 

[9] Schofield, N.A., Assembly line balancing and 
the application of computer techniques. 
Computers and Industrial Engineering 3, 
(1979), pp 53–59. 

 

[10] Falkenauer, E., 2005. Line balancing in the 
real world. In: Proceedings of the 
International Conference on Product 
Lifecycle Management PLM 05, Lumiere 
University of Lyon, France, (2005). 

 

[11] Gamberini, R., Grassi, A., Rimini, B., A 
new multi-objective heuristic algorithm for 
solving the stochastic assembly line re-
balancing problem. International journal of  
Production Economics 102, (2006), pp 226–
243. 

 

[12] Gamberini, R., Grassi, A., Gamberi, M., 
Manzini, R., Regattieri, A., U-shaped 
assembly lines with stochastic tasks 
execution times: heuristic procedures for 
balancing and rebalancing problems. In: 
Proceedings of the Business and Industry 
Symposium, (2004) Advanced Simulation 
Technologies Conference, Arlington, 
Virginia. (2004). 

 
[13] Bautista, J., Pereira, J., Ant algorithms for a 

time and space constrained assembly line 
balancing problem. European Journal of 
Operational Research 177, (2007), pp 2016–
2032. 

 
[14] Johnson RV., Assembly line balancing 

algorithms: computation comparisons. Int J 
Prod Res 19, (1981), pp 277–287. 

 
[15] Hoffmann TR., EUREKA: a hybrid system 

for assembly line balancing. Manage Sci 38, 
(1992), pp 39 –47. 

 
[16] Jackson JR., A computing procedure for a 

line balancing problem. Manage Sci, 2, 
(1956), pp 261 – 271. 

 
[17] Schrage LE, Baker KR Dynamic 

programming solution of sequencing 
problems with precedence constraints. Oper 
Res 26, (1978), pp 444– 449. 

 

[18] Scholl A, Becker C., State-of-the-art 
exact and heuristic solution procedures 
for simple assembly line balancing. Eur 
J Oper Res 168, (2006), pp 666 –693. 

 
[19] Karp RM Reducibility among 

combinatorial problems. In: Miller RE, 
Thatcher JW (eds) Complexity of 
computer applications. Plenum, New 
York, (1972). 

 
[20] Baybars I A survey of exact 

algorithms for the simple assembly line 
balancing problem. Manage Sci, 32, 
(1986), pp  909–932. 

 
[21] Andreas C. Nearchou Balancing large 

assembly lines by a new heuristic based 
on differential evolution method. Int J 
Adv Manuf Technol, 34, (2007), pp 
1016–1029. 

 
[22] Kirkpatrick S, Gelatt CD Jr, Vecchi 

MP Optimization by simulated 
annealing. Science, 220, (1983), pp 
671– 680. 

 
[23] Glover F., Tabu-search-Part I. O RS A 

J Comput, 1, (1989), pp 190–206. 
 
[24] Glover F., Tabu-search-Part II. ORSA 

J Comput, 2, (1990), pp 4 –32. 
 
[25] A. C. NEARCHOU. Multi-objective 

balancing of assembly lines by 
population heuristics, International 
Journal of Production Research, 46, 
(2008), pp 8, 15. 

 
[26]  Storn R, Price K., Differential 

evolution - a simple and efficient 
heuristic for global optimization over 
continuous spaces. J Glob Optim, 11, 
(1997), pp 341–354. 

 
[27]  Ali MM, Törn A (2004) Population set-

based global optimization algorithms: 
some modifications and numerical 
studies. Comput Oper Res, 31, (2004), 
pp 1703–1725. 



Hadi Mokhtari1 and Ashkan Mozdgir                    A Bi-Objective Approach for Design of an Assembly Line Re- . . .               117 

International Journal of Industrial Engineering & Production Research, March 2015, Vol. 26, No. 2 

[28]  Kaelo P, Ali MM., A numerical study of 
some modified differential evolution 
algorithms. Eur J Oper Res, 171, (2006), pp 
674–692. 

 
[29]  Nearchou AC., Meta-heuristics from nature 

for the loop layout design problem. Int J Prod 
Econ, 101, (2006), pp 312–328. 

 
[30] Onwubolu GO, Davendra D Scheduling flow 

shops using differential evolution. Eur J Oper 
Res, 169, (2006), pp 1176–1184. 

 
[31] Homepage for assembly line optimization 

research, available from: 

http://www.assembly-line-balancing.de/. 
 


